#load libraries
library(ggplot2)
Diamonds viz
Diamonds Viz
Let’s plot the diamonds dataset using ggplot2.
Let’s take a quick look at the data.
head(diamonds)
# A tibble: 6 × 10
carat cut color clarity depth table price x y z
<dbl> <ord> <ord> <ord> <dbl> <dbl> <int> <dbl> <dbl> <dbl>
1 0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43
2 0.21 Premium E SI1 59.8 61 326 3.89 3.84 2.31
3 0.23 Good E VS1 56.9 65 327 4.05 4.07 2.31
4 0.29 Premium I VS2 62.4 58 334 4.2 4.23 2.63
5 0.31 Good J SI2 63.3 58 335 4.34 4.35 2.75
6 0.24 Very Good J VVS2 62.8 57 336 3.94 3.96 2.48
View the diamonds dataset as counts by ::: {.callout}
ggplot(data = diamonds,
aes(x = cut, y = price))+
geom_histogram( stat = "identity")
Warning in geom_histogram(stat = "identity"): Ignoring unknown parameters:
`binwidth`, `bins`, and `pad`
Let’s log the date and time.
library(lubridate)
Attaching package: 'lubridate'
The following objects are masked from 'package:base':
date, intersect, setdiff, union
<- now(tzone = "America/Vancouver")
my_time my_time
[1] "2024-09-19 12:08:47 PDT"